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Study of Transverse Loss Factor for the
Tapered Sections in the APS Storage Ring

1 Transverse loss factor power law

In the 7-GeV Advanced Photon Source (APS) storage ring, the tapered sections are
considered to be the main contributor to the transverse impedance. The- structure is
shown in Fig. 1. The large tube represents the beam chamber, and the small one the
insertion device (ID) section. Both are connected by a tapered transition with angle 6.
This note presents a power law dependence of the transverse loss factor on the taper
angle for this structure.

We define a normalized taper angle ¢ by
é=0/90°, (1)

which i1s dimensionless and varies between 1 and 0 when the transition length L changes
between 0 and infinity. The power law can be expressed as

k(¢) = Bs™ , (2)

in which k i1s the transverse loss, and B and « are two parameters. Both B and o are
functions of the bunch length ¢ and the tube radii a and b. When ¢ = 1, which corre-
sponds to a step-like discontinuity, the loss is equal to B. This value can be accurately
computed by TBCL [?] It has a dimension of V/pC - m, same as that of k.

To illustrate this law, we start with the parameters of the transition from chamber
to ID section in the APS storage ring.

o = 0.58cm ,
b = 0.4cm , (3)
a = 2cm .

Fig. 2 shows a plot of the transverse loss factor k& versus the normalized taper an-
gle ¢ for this case. The solid curve represents the power law with ¢ = 0.756 and

B =369.1V/pC-m. The diamond-like points represent data calculated by TBCI, which
fits very well to the curve.

When the geometrical parameters ¢ and b and the bunch length ¢ change, B and «
will change accordingly. Table 1 is a list that summarizes our results. In No. 1-5, the



bunch is relatively long, (¢ = 0.38 or 1.16cm) Eq. (2) works well for various values of a
and b. Fig. 3 is another example (No. 2 in Table 1), in which b is increased to 0.8 cm.
In No. 6, however, we find that the power law doesn’t fit too well for short bunches,
(¢ = 0.29¢cm) as seen in Fig. 4. This may be attributed to the errors in TBCI data,
which 1s to be discussed in the following section.

2 Errorsin TBCI output and two correction schemes

When we employ TBCI to calculate the wake potentials for this type of structure,
“humps” are often observed in the output. Namely, near the bunch head, the transverse
wake becomes negative whereas the longitudinal and azimuthal ones become positive,
as shown in Fig. 5(a) and 6(a). These results are apparently nonphysical. We have used
two schemes to get rid of these humps. Both seem to work.

(2) Reducing mesh size:
Fig. 5 shows the wake potentials calculated by TBCI for a 0.3 cm bunch
traversing the tapered section. The calculation has been done for mesh sizes
§ ranging from 0.1 cm down to 0.0125 cm, corresponding to the number of
mesh points from approximately 10,000 up to 600,000. The humps are clearly
visible in Fig. 5(a) (§ = 0.1 cm), while practically non-existent in Fig. 5(b)
(6 = 0.0125 cm). Thisis due to the fact that TBClis a “first-order” code, that
1s, all variables in the Maxwell equations are expanded to first-order terms.
The second-order errors contribute to the nonphysical hump, and they will
get smaller with decreasing mesh size.

(b) Invoking WAKCOR:
Another way to “iron out” the humps is to make use of WARKCOR, a post-
processor of TBCIL. This is similar to the so-called direct method. It involves
three runs.

i. Use TBCI to get the wakes W) (Fig. 6(a)) for the structure shown in
Fig. 1.
ii. Use TBCI to get the error wakes W) (Fig. 6(b)) for a smooth tube as

shown in Fig. 7. The integration should be performed along the same
path as that in the previous run, 1. e., a distance of b from the axis.

iii. Use WAKCOR to subtract W® from W to get the corrected wakes
W) (Fig. 6(c)). The humps become much less pronounced.

The explanation is as follows. W) includes both the true wakes and the
error parts, while W has error parts only. When we do the subtraction,
most errors in W) are gone, resulting in more accurate wakes.

3 Conclusions

We have numerically found a power law, Eq. (2), which can describe the dependence
of the loss k& to the taper angle 0 (at least for the not-so-short bunches). Due to the fact
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that TBCI uses only three types of angles — 0°, 45° and 90° — the matching between
the actual boundary and the TBCI-generated one would be poor when the taper angle
in Fig. 1 is far away from these values. For example, § of the APS storage ring is just
about 5°, which leads to slow convergence of TBCI results. [2] Therefore, the following
recipe based on Eq. (2) should prove useful.

e For given parameters o, a and b, calculate & using TBCI when 8 = 90°. It is equal

to B.

¢ Calculate k when 8 = 45°, which determines c.
e Obtain % for any given § from Egs. (1) and (2).

The two schemes discussed in Sec. 2 are useful to get more accurate results from a TBCI
output.

At this moment, it is not clear to us how truthful this power law is. Our results are
solely numerical. However, it is unlikely that the good agreement between the TBCI
data and the power law curve is coincidental. It is planned to attempt to derive a proof
by using the recently developed method of boundary perturbation. [3]
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No. (,b) in cm ¢inem BinV/zC-m e
1 (2, 0.4) 0.58 360.1 0.735
2 (2, 0.8) 053 123.1 0.753
3 (2,1.6) 0.33 10.17 0.573
4 (1,0.4) 0.38 236.¢ 0.672
3 (2,0.4) 1.16 188.7 ¢.700
6 (2,04 0.29 633.5 0.634
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Figure 1. Tapered sections in the APS siorage ring.
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Figure 3. Transverse loss facior power law fora =2 cm, b =08 cm, ¢
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Figure 4. Transverse loss'factor power law fora =2 cm, b =04 cm, ¢ = 0.29 ¢



TAAETT

Smax

I w2 2A0NSEI amMe 2

=

A D e 3R N ISTR GO IS E L S

]

4
-1 - - -
e LIS sL D :
-5 - = = TR D @ &=
""" A IIUTANL, BVR =~
RNTE G PR —
PARTICLE FOSITION / $IrMA
TRETTID £ Ovr BT T IATR #CITE IR I Ot LUWTTE 3 ATS BETRT KD NI JINE-@@  Aenz ol
VekE POTEMTIALS
i " - < B¥
L /7 ~ SN
4 4
- f \.‘f \-
4 \
.,/ ;."\‘ \‘ (b
o / 3 !
A / R N
/ PN R
F; : \ \
; ) \ \
s / A
1
’.f' + Y ‘\‘
J
Rl ! \ N
< ~ v
i ] N~
L L~ { el N
e e B
@ = i
~ ~. { 7
~ S g
\ e J°
) \ ¢
Ay AN ( 12
\ \\ I’ -
\ A} s
AY :
Al !
\ A ¢
AN ’
N ’
Y s
g
[y 4
s
/\ :
~ ’
"1. : : !
Ranmensmnanlll 8} Viboan® o TERLREE o<y
-5 - NG WS @ =
T IINUTANL VOE
. RINCA S47X o - -
’ PARTICLE FOSITION / SICMaA

Figure &.

TBCI correction via decreased mesh size.
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TBCI correction via WAKCOR. i

Figure 6.



" Figure 7. The smooth tube used in WAKCOR correction.





